世界生命科學(xué)前沿動(dòng)態(tài)周報(bào)(四十七)
(7.4-7.10/2011)
美寶國際集團(tuán):陶國新
主要內(nèi)容:有吸收功能的組織工程小腸;第一次分離出單個(gè)純的人體血液干細(xì)胞;乙酰輔酶A水平影響細(xì)胞生長增殖;卵巢上皮細(xì)胞癌變過程中生物力學(xué)特征的變化;中樞神經(jīng)系統(tǒng)損傷后形成的疤痕來源于周細(xì)胞;間充質(zhì)干細(xì)胞--體內(nèi)的創(chuàng)傷藥房。
焦點(diǎn)動(dòng)態(tài):乙酰輔酶A水平影響細(xì)胞生長增殖。
1. 有吸收功能的組織工程小腸
【動(dòng)態(tài)】
最近,洛杉磯兒童醫(yī)院的科學(xué)家通過組織工程手段在老鼠身上制造了有功能的小腸,希望將來能用于治療短腸綜合癥。在他們最新發(fā)表的“一種多細(xì)胞方法在老鼠中形成足夠量的組織工程小腸”文章中報(bào)道了他們能在老鼠中生長組織工程小腸。小腸是一個(gè)非常精巧的具有再生能力的器官,在我們一生中小腸細(xì)胞不斷更新。這些科學(xué)家利用了小腸的這種再生能力,將取自兩周大綠色熒光標(biāo)記的供體轉(zhuǎn)基因老鼠的類器官單位(包含形成小腸的各種類型細(xì)胞的混合物,包括肌細(xì)胞和上皮細(xì)胞)加載到生物降解材料做成的支架上,而后植入3到6個(gè)月大的完全無免疫力的轉(zhuǎn)基因老鼠模型腹內(nèi),根據(jù)綠色熒光標(biāo)記追蹤植入細(xì)胞的生長情況,由植入細(xì)胞生成的各種細(xì)胞群最終形成了包含所有重要細(xì)胞類型,肌細(xì)胞、神經(jīng)細(xì)胞、四種類型上皮細(xì)胞和部分血管,類似于自然小腸結(jié)構(gòu)的具有吸收功能的組織工程小腸。
【點(diǎn)評(píng)】
這個(gè)實(shí)驗(yàn)的結(jié)果很令人興奮,相當(dāng)于通過細(xì)胞移植在體內(nèi)培養(yǎng)出起作用的小腸。但是考慮到實(shí)驗(yàn)是在完全無免疫力的老鼠而非正常老鼠身上獲得這一結(jié)果的,其價(jià)值尤其是應(yīng)用前景就大打折扣了。
【參考論文】Tissue Engineering Part A, 2011; 17 (13-14): 1841 DOI:10.1089/ten.tea.2010.0564
A Multicellular Approach Forms a Significant Amount of Tissue-Engineered Small Intestine in the Mouse
Frédéric G. Sala, Jamil A. Matthews, Allison L. Speer, et al.
Tissue-engineered small intestine (TESI) has successfully been used to rescue Lewis rats after massive small bowel resection. In this study, we transitioned the technique to a mouse model, allowing investigation of the processes involved during TESI formation through the transgenic tools available in this species. This is a necessary step toward applying the technique to human therapy. Multicellular organoid units were derived from small intestines of transgenic mice and transplanted within the abdomen on biodegradable polymers. Immunofluorescence staining was used to characterize the cellular processes during TESI formation. We demonstrate the preservation of Lgr5- and DcamKl1-positive cells, two putative intestinal stem cell populations, in proximity to their niche mesenchymal cells, the intestinal subepithelial myofibroblasts (ISEMFs), at the time of implantation. Maintenance of the relationship between ISEMF and crypt epithelium is observed during the growth of TESI. The engineered small intestine has an epithelium containing a differentiated epithelium next to an innervated muscularis. Lineage tracing demonstrates that all the essential components, including epithelium, muscularis, nerves, and some of the blood vessels, are of donor origin. This multicellular approach provides the necessary cell population to regenerate large amounts of intestinal tissue that could be used to treat short bowel syndrome.
2. 第一次分離出單個(gè)純的人體血液干細(xì)胞
【動(dòng)態(tài)】
科學(xué)雜志最新發(fā)表的加拿大科學(xué)家的研究顯示發(fā)現(xiàn)干細(xì)胞50年來,第一次以單個(gè)細(xì)胞形式分離出最純的人體血液干細(xì)胞,能夠再生整個(gè)血液系統(tǒng),極大的補(bǔ)充了血液系統(tǒng)發(fā)育的線路圖。血液細(xì)胞的終生生產(chǎn)依賴于極少的造血干細(xì)胞,經(jīng)由一系列不同細(xì)胞系的過渡狀態(tài),持續(xù)補(bǔ)充成熟細(xì)胞。但是對(duì)于造血干細(xì)胞的研究一直受困于無法從多能祖細(xì)胞中將其純化出來。加拿大的這項(xiàng)研究找到了造血干細(xì)胞的特殊標(biāo)記物CD49f,從而能夠?qū)⑵湟詥蝹€(gè)細(xì)胞的形式純化出來。這將大大促進(jìn)對(duì)于造血干細(xì)胞生命規(guī)律的研究以及臨床治療用途的開發(fā)。
【點(diǎn)評(píng)】
能夠徹底純化人體造血干細(xì)胞無論是對(duì)干細(xì)胞的基礎(chǔ)研究還是對(duì)干細(xì)胞臨床應(yīng)用開發(fā)都是一個(gè)突破性進(jìn)展。這一發(fā)現(xiàn)最終準(zhǔn)確定位了整個(gè)血液系統(tǒng)的發(fā)源地。
【參考論文Science, 2011; 333 (6039): 218 DOI:10.1126/science.1201219
Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment
F. Notta, S. Doulatov, E. Laurenti, et al.
Lifelong blood cell production is dependent on rare hematopoietic stem cells (HSCs) to perpetually replenish mature cells via a series of lineage-restricted intermediates. Investigating the molecular state of HSCs is contingent on the ability to purify HSCs away from transiently engrafting cells. We demonstrated that human HSCs remain infrequent, using current purification strategies based on Thy1 (CD90) expression. By tracking the expression of several adhesion molecules in HSC-enriched subsets, we revealed CD49f as a specific HSC marker. Single CD49f+ cells were highly efficient in generating long-term multilineage grafts, and the loss of CD49f expression identified transiently engrafting multipotent progenitors (MPPs). The demarcation of human HSCs and MPPs will enable the investigation of the molecular determinants of HSCs, with a goal of developing stem cell–based therapeutics.
3. 乙酰輔酶A水平影響細(xì)胞生長增殖
【動(dòng)態(tài)】
美國科學(xué)家最近發(fā)現(xiàn)乙酰輔酶A通過促進(jìn)生長基因上的組蛋白乙?;瘉碚T導(dǎo)細(xì)胞生長和增殖。細(xì)胞進(jìn)入生長和分化的決定必須與其可用營養(yǎng)和代謝狀態(tài)密切配合。這些代謝和營養(yǎng)方面的要求條件及其誘導(dǎo)細(xì)胞生長增殖的機(jī)理還很不清楚。美國科學(xué)家報(bào)道了乙酰輔酶A作為碳源的下游代謝產(chǎn)物代表了一種有關(guān)生長增殖的關(guān)鍵代謝信號(hào)。在進(jìn)入生長周期時(shí),細(xì)胞內(nèi)乙酰輔酶A的水平有實(shí)質(zhì)性增長結(jié)果誘導(dǎo)重要的生長基因上的組蛋白進(jìn)行Gcn5p/SAGA 催化的乙?;?,由此促使他們能夠快速轉(zhuǎn)錄并致力于細(xì)胞生長。 因此,乙酰輔酶A起到碳源“變阻器”的作用,通過促進(jìn)生長基因上的特殊組蛋白的乙酰化來啟動(dòng)細(xì)胞生長程序。
【點(diǎn)評(píng)】
細(xì)胞內(nèi)乙酰輔酶A的水平影響生長基因上的組蛋白的乙酰化水平,進(jìn)而影響細(xì)胞進(jìn)入生長和分化的決定。營養(yǎng)和代謝狀態(tài)決定著細(xì)胞生長和增殖,乙酰輔酶A作為關(guān)鍵代謝信號(hào)起重要作用。
【參考論文】Molecular Cell, 2011 42(4): 426-437
Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes
Ling Cai, Benjamin M. Sutter, Bing Li, and Benjamin P. Tu
The decision by a cell to enter a round of growth and division must be intimately coordinated with nutrient availability and its metabolic state. These metabolic and nutritional requirements, and the mechanisms by which they induce cell growth and proliferation, remain poorly understood. Herein, we report that acetyl-CoA is the downstream metabolite of carbon sources that represents a critical metabolic signal for growth and proliferation. Upon entry into growth, intracellular acetyl-CoA levels increase substantially and consequently induce the Gcn5p/SAGA-catalyzed acetylation of histones at genes important for growth, thereby enabling their rapid transcription and commitment to growth. Thus, acetyl-CoA functions as a carbon-source rheostat that signals the initiation of the cellular growth program by promoting the acetylation of histones specifically at growth genes.
4. 卵巢上皮細(xì)胞癌變過程中生物力學(xué)特征的變化
【動(dòng)態(tài)】
癌細(xì)胞侵襲性的表現(xiàn)被認(rèn)為是除遺傳變化外,還與生物力學(xué)和細(xì)胞骨架結(jié)構(gòu)的改變有關(guān)。美國科學(xué)家的一項(xiàng)最新研究測(cè)定了老鼠卵巢表面上皮細(xì)胞癌變過程中細(xì)胞的粘彈性的變化,發(fā)現(xiàn)在它們還是良性的時(shí)候更硬更粘,細(xì)胞變形性的增加直接與癌變進(jìn)程相關(guān)。細(xì)胞骨架結(jié)構(gòu)中肌動(dòng)蛋白水平的下降直接與細(xì)胞生物力學(xué)性質(zhì)的變化相關(guān)。不同癌癥階段的不同生物力學(xué)表現(xiàn)有助于癌癥的診斷、風(fēng)險(xiǎn)評(píng)估和提高治療效果。該研究中,癌變細(xì)胞相比未癌變的健康細(xì)胞,顯得更軟和變形更快,流動(dòng)性也增加了。
【點(diǎn)評(píng)】
細(xì)胞生物力學(xué)性質(zhì)的變化揭示了癌癥的發(fā)展階段,將生物學(xué)問題的物理學(xué)特征呈現(xiàn)出來。開闊了癌癥研究乃至生物學(xué)研究的視野,也有助于從新的角度研究和解決癌癥難題。
【參考論文】Nanomedicine: Nanotechnology, Biology and Medicine, 2011; doi: 10.1016/j.nano.2011.05.012
The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures
Alperen N. Ketene, Eva M. Schmelz, Paul C. Roberts, Masoud Agah
Alterations in the biomechanical properties and cytoskeletal organization of cancer cells in addition to genetic changes have been correlated with their aggressive phenotype. In this study, we investigated changes in the viscoelasticity of mouse ovarian surface epithelial (MOSE) cells, a mouse model for progressive ovarian cancer. We demonstrate that the elasticity of late-stage MOSE cells (0.549 ± 0.281 kPa) were significantly less than that of their early-stage counterparts (1.097 ± 0.632 kPa). Apparent cell viscosity also decreased significantly from early (144.7 ± 102.4 Pa-s) to late stage (50.74 ± 29.72 Pa-s). This indicates that ovarian cells are stiffer and more viscous when they are benign. The increase in cell deformability directly correlates with the progression of a transformed phenotype from a nontumorigenic, benign cell to a tumorigenic, malignant one. The decrease in the level of actin in the cytoskeleton and its organization is directly associated with the changes in cell biomechanical property.
5. 中樞神經(jīng)系統(tǒng)損傷后形成的疤痕來源于周細(xì)胞
【動(dòng)態(tài)】
瑞典科學(xué)家在最近的科學(xué)雜志上報(bào)道了他們發(fā)現(xiàn)了中樞神經(jīng)損傷后形成疤痕組織的細(xì)胞來源是周細(xì)胞。中樞神經(jīng)損傷后缺損組織的再生能力很有限,損傷會(huì)被疤痕組織封閉。由于此疤痕組織富含星形膠質(zhì)細(xì)胞,常被認(rèn)為是神經(jīng)膠質(zhì)疤痕,其作用復(fù)雜,被探討了一個(gè)多世紀(jì)了。該研究發(fā)現(xiàn)在受傷脊髓中形成疤痕的基質(zhì)細(xì)胞是由一種特殊亞型的周細(xì)胞派生來的,在傷處該周細(xì)胞數(shù)目多于星形膠質(zhì)細(xì)胞。阻斷該細(xì)胞的繁衍會(huì)使受傷組織無法閉合。該發(fā)現(xiàn)提供了一種組織纖維化的細(xì)胞來源。
【點(diǎn)評(píng)】
中樞神經(jīng)損傷后形成的疤痕組織來源于周細(xì)胞的發(fā)現(xiàn),有助于促進(jìn)神經(jīng)損傷修復(fù)的研究。
【參考論文】Science 8 July 2011: Vol. 333 no. 6039 pp. 238-242,DOI: 10.1126/science.1203165
A Pericyte Origin of Spinal Cord Scar Tissue
Christian Göritz, David O. Dias, Nikolay Tomilin, et al.
There is limited regeneration of lost tissue after central nervous system injury, and the lesion is sealed with a scar. The role of the scar, which often is referred to as the glial scar because of its abundance of astrocytes, is complex and has been discussed for more than a century. Here we show that a specific pericyte subtype gives rise to scar-forming stromal cells, which outnumber astrocytes, in the injured spinal cord. Blocking the generation of progeny by this pericyte subtype results in failure to seal the injured tissue. The formation of connective tissue is common to many injuries and pathologies, and here we demonstrate a cellular origin of fibrosis.
6. 間充質(zhì)干細(xì)胞--體內(nèi)的創(chuàng)傷藥房
【動(dòng)態(tài)】
研究表明體內(nèi)間充質(zhì)干細(xì)胞位于血管周,只關(guān)注它們多向分化能力的傳統(tǒng)觀點(diǎn)也該擴(kuò)展到包含那些拓寬其治療前景的同樣吸引人的功能如細(xì)胞調(diào)節(jié)。細(xì)胞雜志的一篇綜述就此問題的已有證據(jù)進(jìn)行了研究,結(jié)果發(fā)現(xiàn)在局部損傷中,間充質(zhì)干細(xì)胞從血管周的位置釋放出來,激活,通過分泌生物活性分子和調(diào)節(jié)局部免疫反應(yīng)建立再生的微環(huán)境。這些營養(yǎng)和免疫調(diào)節(jié)行為顯示間充質(zhì)干細(xì)胞可能充當(dāng)了體內(nèi)管理損傷部位的“藥房”。這一能夠形成多種不同組織的干細(xì)胞在起自然保護(hù)、治療和生產(chǎn)抗生素的作用。
【點(diǎn)評(píng)】
間充質(zhì)干細(xì)胞越來越多的重要作用被揭示出來,充分說明該種干細(xì)胞在體內(nèi)的重要意義,如何體內(nèi)營造適于它生活的環(huán)境應(yīng)該成為發(fā)揮其生理功能的重要研究課題。
【參考論文】Cell Stem Cell, Volume 9, Issue 1, 11-15, 8 July 2011 DOI: 10.1016/j.stem.2011.06.008
The MSC: An Injury Drugstore
Arnold I. Caplan, Diego Correa
Now that mesenchymal stem cells (MSCs) have been shown to be perivascular in vivo, the existing traditional view that focuses on the multipotent differentiation capacity of these cells should be expanded to include their equally interesting role as cellular modulators that brings them into a broader therapeutic scenario. We discuss existing evidence that leads us to propose that during local injury, MSCs are released from their perivascular location, become activated, and establish a regenerative microenvironment by secreting bioactive molecules and regulating the local immune response. These trophic and immunomodulatory activities suggest that MSCs may serve as site-regulated drugstores in vivo.